Machine learning approaches are widely studied in the production prediction of CBM wells after hydraulic fracturing, but merely used in practice due to the low generalization ability and the lack of interpretability. A novel methodology is proposed in this article to discover the latent causality from observed data, which is aimed at finding an indirect way to interpret the machine learning results. Based on the theory of causal discovery, a causal graph is derived with explicit input, output, treatment and confounding variables. Then, SHAP is employed to analyze the influence of the factors on the production capability, which indirectly interprets the machine learning models. The proposed method can capture the underlying nonlinear relationship between the factors and the output, which remedies the limitation of the traditional machine learning routines based on the correlation analysis of factors. The experiment on the data of CBM shows that the detected relationship between the production and the geological/engineering factors by the presented method, is coincident with the actual physical mechanism. Meanwhile, compared with traditional methods, the interpretable machine learning models have better performance in forecasting production capability, averaging 20% improvement in accuracy.
translated by 谷歌翻译
Transfer learning is a simple and powerful method that can be used to boost model performance of low-resource neural machine translation (NMT). Existing transfer learning methods for NMT are static, which simply transfer knowledge from a parent model to a child model once via parameter initialization. In this paper, we propose a novel transfer learning method for NMT, namely ConsistTL, which can continuously transfer knowledge from the parent model during the training of the child model. Specifically, for each training instance of the child model, ConsistTL constructs the semantically-equivalent instance for the parent model and encourages prediction consistency between the parent and child for this instance, which is equivalent to the child model learning each instance under the guidance of the parent model. Experimental results on five low-resource NMT tasks demonstrate that ConsistTL results in significant improvements over strong transfer learning baselines, with a gain up to 1.7 BLEU over the existing back-translation model on the widely-used WMT17 Turkish-English benchmark. Further analysis reveals that ConsistTL can improve the inference calibration of the child model. Code and scripts are freely available at https://github.com/NLP2CT/ConsistTL.
translated by 谷歌翻译
记住和遗忘机制是人类学习记忆系统中同一硬币的两侧。灵感来自人类脑记忆机制,现代机器学习系统一直在努力通过更好地记住终身学习能力的机器,同时推动遗忘为敌人来克服。尽管如此,这个想法可能只能看到半张图片。直到最近,越来越多的研究人员认为,大脑出生忘记,即忘记是抽象,丰富和灵活的陈述的自然和积极的过程。本文通过人工神经网络积极遗忘机制提出了一种学习模型。主动遗忘机制(AFM)通过“即插即用”遗忘层(P \&PF)引入神经网络,由具有内部调节策略(IRS)的抑制神经元组成,以调整自己的消光率通过横向抑制机制和外部调节策略(ERS)通过抑制机制调节兴奋性神经元的消光速率。实验研究表明,P \&PF提供了令人惊讶的益处:自适应结构,强大的泛化,长期学习和记忆,以及对数据和参数扰动的鲁棒性。这项工作阐明了忘记学习过程的重要性,并提供了新的视角,了解神经网络的潜在机制。
translated by 谷歌翻译
恢复程序的呼叫图对于基于流程间分析任务和应用程序至关重要。核心挑战是识别间接呼叫的目标(即,间接分支机构)。由于二进制文件中的信息丢失,如果目标程序以二元形式为二元形式,则变得更具挑战性。二进制文件的现有间接Callee识别解决方案都具有高误报和负面,使呼叫图不准确。在本文中,我们提出了一种基于暹罗神经网络的新解决方案,受到质疑答案应用的进步的启发。关键洞察力是,神经网络可以学习通过理解其上下文,即附近呼叫和分支机构的指示是间接代表的潜在目标。在此洞察力之后,我们首先预处理目标二进制文件,以提取电话和分支的上下文。然后,我们构建适用于汇编语言的自定义自然语言处理(NLP)模型。此外,我们收集了丰富的呼叫和分支,并将其上下文与NLP模型嵌入,然后培训暹罗网络和分类器以回答电呼叫路上的问题。我们已经实施了Inclelee的原型,并在几组目标上进行了评估。评价结果表明,我们的解决方案可以将手段与F1措施相匹配93.7%,召回的93.8%,精度为93.5%,比最先进的解决方案好得多。为了展示其有用性,我们将iCallee应用于两个特定的应用 - 二进制代码相似性检测和二进制程序硬化,并发现它可以大大提高最先进的解决方案。
translated by 谷歌翻译
我们提出了一种分布式引导方法,用于同时推断高维大量数据,该数据被许多机器存储和处理。该方法基于通信有效的偏差套索产生$ \ ell_ \ infty $ norm置信区域,我们提出了一种有效的交叉验证方法来调整每种迭代的方法。从理论上讲,我们证明了对通信的数量$ \ tau _ {\ min} $的下限,它值得统计准确性和效率。此外,$ \ tau _ {\ min} $仅与工人数量和固有维度的对数增加,而几乎不变为标称维度。我们通过广泛的仿真研究测试我们的理论,以及基于美国航空公司的按时绩效数据集的半合成数据集上的可变筛选任务。复制数值结果的代码可在GitHub上获得:https://github.com/skchao74/distributed-bootstrap。
translated by 谷歌翻译
同态加密(HE),允许对加密数据(Ciphertext)进行计算,而无需首先解密,因此可以实现对云中隐私性的应用程序的安全性缓慢的卷积神经网络(CNN)推断。为了减少推理潜伏期,一种方法是将多个消息打包到单个密文中,以减少密文的数量并支持同型多态多重蓄能(HMA)操作的大量并行性。尽管HECNN的推断速度更快,但主流包装方案密集的包装(密度)和卷积包装(Convpack)仍将昂贵的旋转开销引入了昂贵的旋转开销,这延长了HECNN的推断潜伏期,以实现更深和更广泛的CNN体​​系结构。在本文中,我们提出了一种名为FFCONV的低级分解方法,该方法专门用于有效的密文填料,用于减少旋转台面和HMA操作。 FFCONV近似于低级分解卷积的A D X D卷积层,其中D X D低率卷积具有较少的通道,然后是1 x 1卷积以恢复通道。 D X D低级别卷积带有密度,导致旋转操作显着降低,而1 x 1卷积的旋转开销接近零。据我们所知,FFCONV是能够同时减少densepack和Convpack产生的旋转头顶的第一项工作,而无需将其他特殊块引入HECNN推理管道。与先前的Art Lola和Falcon相比,我们的方法分别将推理潜伏期降低了88%和21%,其精度在MNIST和CIFAR-10上具有可比的精度。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译
Despite excellent performance in image generation, Generative Adversarial Networks (GANs) are notorious for its requirements of enormous storage and intensive computation. As an awesome ''performance maker'', knowledge distillation is demonstrated to be particularly efficacious in exploring low-priced GANs. In this paper, we investigate the irreplaceability of teacher discriminator and present an inventive discriminator-cooperated distillation, abbreviated as DCD, towards refining better feature maps from the generator. In contrast to conventional pixel-to-pixel match methods in feature map distillation, our DCD utilizes teacher discriminator as a transformation to drive intermediate results of the student generator to be perceptually close to corresponding outputs of the teacher generator. Furthermore, in order to mitigate mode collapse in GAN compression, we construct a collaborative adversarial training paradigm where the teacher discriminator is from scratch established to co-train with student generator in company with our DCD. Our DCD shows superior results compared with existing GAN compression methods. For instance, after reducing over 40x MACs and 80x parameters of CycleGAN, we well decrease FID metric from 61.53 to 48.24 while the current SoTA method merely has 51.92. This work's source code has been made accessible at https://github.com/poopit/DCD-official.
translated by 谷歌翻译
Gradient-based explanation is the cornerstone of explainable deep networks, but it has been shown to be vulnerable to adversarial attacks. However, existing works measure the explanation robustness based on $\ell_p$-norm, which can be counter-intuitive to humans, who only pay attention to the top few salient features. We propose explanation ranking thickness as a more suitable explanation robustness metric. We then present a new practical adversarial attacking goal for manipulating explanation rankings. To mitigate the ranking-based attacks while maintaining computational feasibility, we derive surrogate bounds of the thickness that involve expensive sampling and integration. We use a multi-objective approach to analyze the convergence of a gradient-based attack to confirm that the explanation robustness can be measured by the thickness metric. We conduct experiments on various network architectures and diverse datasets to prove the superiority of the proposed methods, while the widely accepted Hessian-based curvature smoothing approaches are not as robust as our method.
translated by 谷歌翻译